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Reads and mapping them

] |dentifier —1—® @SRR566546.970 HWUSI-EAS1673_11067_FC7070M:4:1:2299:1109 length=50
Sequence —1—@ TTGCCTGCCTATCATTTTAGTGCCTGTGAGGTGGAGATGTGAGGATCAGT
One read + sign —|-® +
_  Quality scores —1—@ hhhhhhhhhhghhghhhhhfhhhhhfffffe‘ee[‘X]b[d[ed‘ [Y["Y
B |dentifier —1—@® Q@SRR566546.971 HWUSI-EAS1673_11067_FC7070M:4:1:2374:1108 length=50
Sequence —-@ GATTTGTATGAAAGTATACAACTAAAACTGCAGGTGGATCAGAGTAAGTC
Another +' sign —-@ +
Quality scores —@ hhhhgfhhcghghggfcffdhfehhhhcehdchhdhahehffffde ‘bVd
read - : .
Aligned read CGCATCAGT
Reference genome - - -ACTTGACGCATCAGTTGAAACGTA. . must match
‘ exactly?
chr1:105833 105843 105853

Read mapping — popular tools
e STAR, Bowtie, HISATZ2, TopHat
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Visualizing mapped reads
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What to do with counts?

Issues:

1. Gene length (does not matter much for across sample comparisons )
2. Read depth
3. GC content, mappability



What to do with counts?

® Reads per million or Counts per million
® Does not account for transcript length
® OK to use for sequencing protocols where reads are generated irrespective of gene length

Number of reads mapped to gene x10°
RPM or CPM = i E

Total number of mapped reads




What to do with counts?

® RPKM: Reads Per Kilobase of transcript per Million mapped reads

® FPKM*: Fragments Per Kilobase of transcript per Million mapped reads

® FPKM (or RPKM) attempts to normalize for gene size and library depth

*Fragments can mean either individual reads (SE) or paired-end reads that map together (PE)

_lfl

Number of reads mapped to genex10° x 1(
RPKM = ppod tog

Total number of mapped reads x gene length in bp



What to do with counts?

® TPM: Transcripts per million (Transcripts Per Kilobase Million)

® Another form of normalization for gene length and sequencing depth, but in a slightly different order

TPM = A X gy % 10°

A

total reads mapped to gene x 10°
Where A = pp=— 08
gene length in bp

. RPKM 6
TPM = 12X x 10



Which distribution better captures count data?
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 Actual variance:
V=4 au?
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Dispersion matters!

* . ] : 14 — _ 2
. estimate using edgeR a : “dispersion a=(p-v)/u
. fit to real RNA- Seq data (squared coefficient of variation of extra-Poisson
—: Poisson variance for each mean variability)
10% < | I;{eal Cliata I ' 8 : . . . crer .
. g « Dispersion is a measure of the spread or variability in the
: variance higher d
10° i, - ata
than mean 2L 88%
10° - . =
8 107 - Woicson F * Biological Data is often ‘overdispersed’. With increasing
S . " (Mean and | mean the variance grows disproportionally
Ay variance
02 . e should be [ : : : :
. equal « Negative binomial model can account for this
10 - overdispersion

1 I 1 1 | I
" 1" 10° ¢ 1wt 10°
mean
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SLE paper
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SLE paper
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Homework #1

SLE mini project
* Do the same exercise (SLE.gmd) for another cell type and answer
the questions below.

— How many genes were differentially expressed at adjusted p-value cutoff
of 5%? how may up and down-regulated?

— How many genes remain when you filter with log2FC greater than 1 versus
absolute log2FC greater than 17

— Write the resulting short list of genes (p.adj <0.05 and log2FC >1) in a csv
file.

— From that short list, select one gene and write 3-4 sentences about how
this gene in this specific cell type may be relevant to SLE. Ask Google and
ChatGPT for help if you like.



Questions?



Functional analysis of gene sets

GO Term Enrichment Analysis

Gene Co-expression Networks
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Homework #2

GO Term enrichment

* |n the enrichGO function, try setting universe = names(sig_genes) instead
of universe = names(all_genes_list). What happened? How many terms are
statistically significant now?

e |n the enrichGO function, set ont = "CC" rather than ont = "BP". What did
this do? Do you believe BP or CC will be more relevant for most use-cases?

 Gotothe NYU link and select one other visualization you like to use. Add a
code chunk that generates this visualization.
https://learn.gencore.bio.nyu.edu/rna-seqg-analysis/over-
representation-analysis/



https://learn.gencore.bio.nyu.edu/rna-seq-analysis/over-representation-analysis/

Thank You!

e Paramita Dutta - LJI
* Priya Pantham - UCSD

 Barry Grant - UCSD



Resources

e https://learn.gencore.bio.nyu.edu/rna-seqg-analysis/over-representation-
analysis/

e https://allisonhorst.com/r-packages-functions

e http://bioconductor.org/packages/devel/bioc/vignettes/DESeq?2/inst/doc/DE
Seqg2.html

e http://yulab-smu.top/biomedical-knowledge-mining-book/enrichment-
overview.html



https://learn.gencore.bio.nyu.edu/rna-seq-analysis/over-representation-analysis/
https://allisonhorst.com/r-packages-functions
http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html
http://yulab-smu.top/biomedical-knowledge-mining-book/enrichment-overview.html

single-cell!



Evolution of single cell techniques (till 2018)
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CITE-seq workflow - wet
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Structure of an Antibody-derived tag (ADT)
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https://www.nature.com/nmeth

CITE-seq workflow - dry

scRNA-Seq data analysis
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https://www.nature.com/nmeth

Things you can do with ADTs
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Shared nearest neighbor graph (SNN)
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Louvain algorithm

Is a greedy algorithm
Weighted graphs

This algorithm has been widely utilized in many application domains because of:
o Its rapid convergence properties

o  High modularity

o Hierarchal partitioning

26



Louvain algorithm

Modularity
Optimization
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Louvain algorithm

Algorithm [edit]

The value to be optimized is modularity, defined as a value in the range [—1/2, 1} that measures the density

of links inside communities compared to links between communities.l'! For a weighted graph, modularity is
defined as:

Q=% [mj - kikj]é(ci,cj)a

21 “— 2m
ij

where

. Aa;j represents the edge weight between nodes 7 and 3;

e k; and k:j are the sum of the weights of the edges attached to nodes % and j, respectively;
e m is the sum of all of the edge weights in the graph;

* ¢; and ¢; are the communities of the nodes; and

» § is Kronecker delta function (8(z,y) = 1if z = y, 0 otherwise).
Based on the above equation, the modularity of a community ¢ can be calculated as:

Eén Efot 2
QC - zm ( zm ) 3
where

e 2;, is the sum of edge weights between nodes within the community ¢ (each edge is considered twice);
and

e X is the sum of all edge weights for nodes within the community (including edges which link to other
communities).

28



Resources

Review: https://www.nature.com/articles/nprot.2017.149

10x datasets: https://www.10xgenomics.com/resources/datasets

CITE-seq: https://www.nature.com/articles/nmeth.4380

Ab-seq: https://www.nature.com/articles/srep44447

Louvain algorithm: https://towardsdatascience.com/louvain-algorithm-93fde589f58c



https://www.nature.com/articles/nprot.2017.149
https://www.10xgenomics.com/resources/datasets
https://www.nature.com/articles/nmeth.4380
https://www.nature.com/articles/srep44447
https://towardsdatascience.com/louvain-algorithm-93fde589f58c

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Homework #1
	Slide Number 15
	Slide Number 16
	Homework #2
	Thank You!
	Resources
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Resources

